9 research outputs found

    Review on Machine Learning-based Defect Detection of Shield Tunnel Lining

    Get PDF
    At present, machine learning methods are widely used in various industries for their high adaptability, optimization function, and self-learning reserve function. Besides, the world-famous cities have almost built and formed subway networks that promote economic development. This paper presents the art states of Defect detection of Shield Tunnel lining based on Machine learning (DSTM). In addition, the processing method of image data from the shield tunnel is being explored to adapt to its complex environment. Comparison and analysis are used to show the performance of the algorithms in terms of the effects of data set establishment, algorithm selection, and detection devices. Based on the analysis results, Convolutional Neural Network methods show high recognition accuracy and better adaptability to the complexity of the environment in the shield tunnel compared to traditional machine learning methods. The Support Vector Machine algorithms show high recognition performance only for small data sets. To improve detection models and increase detection accuracy, measures such as optimizing features, fusing algorithms, creating a high-quality data set, increasing the sample size, and using devices with high detection accuracy can be recommended. Finally, we analyze the challenges in the field of coupling DSTM, meanwhile, the possible development direction of DSTM is prospected

    Powerformer: A temporal-based transformer model for wind power forecasting

    No full text
    Wind Power Forecasting has emerged as a critical and dynamic research area in response to the growing demand for renewable energy. The unpredictable and stochastic nature of wind conditions, encompassing factors such as wind speed, wind direction, air temperature, and barometric pressure, poses unique challenges for accurate forecasting of wind power generation. Reliable wind power generation forecasts are essential for optimizing energy grid management, ensuring grid stability, and facilitating the integration of wind energy with existing power systems. To address these challenges, this research introduces Powerformer, a Transformer-based model designed to improve the accuracy of wind power prediction. Powerformer utilizes the infrastructure of the Transformer with innovative modifications to address the complexity of wind power prediction, enhancing temporal feature extraction capabilities while reducing complexity. The research in this study includes a comprehensive set of experiments, revealing that Powerformer achieves superior results among all models. Furthermore, the model exhibits stronger robustness, as confirmed through a series of ablation experiments validating the reasonableness of the model design

    Enhancing Resilience and Reliability of Active Distribution Networks through Accurate Fault Location and Novel Pilot Protection Method

    No full text
    The integration of distributed generation (DG) into the decentralized access of the distribution network transforms the existing structure into an active distribution network. The alteration in fault characteristics poses significant challenges to the coordinated operation of relay protection. Fault location within the distribution network plays a vital role in facilitating fault recovery and enhancing the resilience of the power system. It proves instrumental in improving the network’s ability to withstand extreme disasters, thereby enhancing the reliability of power distribution. Therefore, this paper provides a detailed analysis of the voltage fault components occurring during various fault types within an active distribution network. Building upon the identified characteristics of voltage fault components, a novel approach for the longitudinal protection of active distribution networks is proposed. This method involves comparing the calculated values of voltage fault components with their actual values. The proposed approach is applicable to various fault scenarios, including short-circuit faults, line break faults, and recurring faults. It exhibits advantages such as insensitivity to the penetration of distributed power supplies and robustness in withstanding transition resistance. The simulation results validate the effectiveness of the proposed method, affirming its applicability to diverse protection requirements within active distribution networks

    Use of food waste, fish waste and food processing waste for China's aquaculture industry: Needs and challenge

    No full text
    corecore